Xxx webcam judo

With only token unigrams, the recognition accuracy was 80.5%, while using all features together increased this only slightly to 80.6%. (2014) examined about 9 million tweets by 14,000 Twitter users tweeting in American English.

They used lexical features, and present a very good breakdown of various word types.

For all techniques and features, we ran the same 5-fold cross-validation experiments in order to determine how well they could be used to distinguish between male and female authors of tweets.

Xxx webcam judo-43

Their highest score when using just text features was 75.5%, testing on all the tweets by each author (with a train set of 3.3 million tweets and a test set of about 418,000 tweets). (2012) used SVMlight to classify gender on Nigerian twitter accounts, with tweets in English, with a minimum of 50 tweets.

Their features were hash tags, token unigrams and psychometric measurements provided by the Linguistic Inquiry of Word Count software (LIWC; (Pennebaker et al. Although LIWC appears a very interesting addition, it hardly adds anything to the classification.

The resource would become even more useful if we could deduce complete and correct metadata from the various available information sources, such as the provided metadata, user relations, profile photos, and the text of the tweets.

In this paper, we start modestly, by attempting to derive just the gender of the authors 1 automatically, purely on the basis of the content of their tweets, using author profiling techniques.

For each blogger, metadata is present, including the blogger s self-provided gender, age, industry and astrological sign. The creators themselves used it for various classification tasks, including gender recognition (Koppel et al. The men, on the other hand, seem to be more interested in computers, leading to important content words like software and game, and correspondingly more determiners and prepositions.

One gets the impression that gender recognition is more sociological than linguistic, showing what women and men were blogging about back in A later study (Goswami et al.When using all user tweets, they reached an accuracy of 88.0%.An interesting observation is that there is a clear class of misclassified users who have a majority of opposite gender users in their social network. When adding more information sources, such as profile fields, they reach an accuracy of 92.0%.2004), with and without preprocessing the input vectors with Principal Component Analysis (PCA; (Pearson 1901); (Hotelling 1933)).We also varied the recognition features provided to the techniques, using both character and token n-grams.Gender recognition has also already been applied to Tweets. (2010) examined various traits of authors from India tweeting in English, combining character N-grams and sociolinguistic features like manner of laughing, honorifics, and smiley use.

Tags: , ,